3.15. Deep Potential - Range Correction (DPRc)

Deep Potential - Range Correction (DPRc) is designed to combine with QM/MM method, and corrects energies from a low-level QM/MM method to a high-level QM/MM method:

\[ E=E_\text{QM}(\mathbf R; \mathbf P) + E_\text{QM/MM}(\mathbf R; \mathbf P) + E_\text{MM}(\mathbf R) + E_\text{DPRc}(\mathbf R) \]

See the JCTC paper for details.

3.15.1. Training data

Instead the normal ab initio data, one needs to provide the correction from a low-level QM/MM method to a high-level QM/MM method:

\[ E = E_\text{high-level QM/MM} - E_\text{low-level QM/MM} \]

Two levels of data use the same MM method, so \(E_\text{MM}\) is eliminated.

3.15.2. Training the DPRc model

In a DPRc model, QM atoms and MM atoms have different atom types. Assuming we have 4 QM atom types (C, H, O, P) and 2 MM atom types (HW, OW):

"type_map": ["C", "H", "HW", "O", "OW", "P"]

As described in the paper, the DPRc model only corrects \(E_\text{QM}\) and \(E_\text{QM/MM}\) within the cutoff, so we use a hybrid descriptor to describe them separatedly:

"descriptor" :{
    "type":             "hybrid",
    "list" : [
        {
            "type":     "se_e2_a",
            "sel":              [6, 11, 0, 6, 0, 1],
            "rcut_smth":        1.00,
            "rcut":             9.00,
            "neuron":           [12, 25, 50],
            "exclude_types":    [[2, 2], [2, 4], [4, 4], [0, 2], [0, 4], [1, 2], [1, 4], [3, 2], [3, 4], [5, 2], [5, 4]],
            "axis_neuron":      12,
            "set_davg_zero":    true,
            "_comment": " QM/QM interaction"
        },
        {
            "type":     "se_e2_a",
            "sel":              [6, 11, 100, 6, 50, 1],
            "rcut_smth":        0.50,
            "rcut":             6.00,
            "neuron":           [12, 25, 50],
            "exclude_types":    [[0, 0], [0, 1], [0, 3], [0, 5], [1, 1], [1, 3], [1, 5], [3, 3], [3, 5], [5, 5], [2, 2], [2, 4], [4, 4]],
            "axis_neuron":      12,
            "set_davg_zero":    true,
            "_comment": " QM/MM interaction"
        }
    ]
}

exclude_types can be generated by the following Python script:

from itertools import combinations_with_replacement, product
qm = (0, 1, 3, 5)
mm = (2, 4)
print("QM/QM:", list(map(list, list(combinations_with_replacement(mm, 2)) + list(product(qm, mm)))))
print("QM/MM:", list(map(list, list(combinations_with_replacement(qm, 2)) + list(combinations_with_replacement(mm, 2)))))

Also, DPRc assumes MM atom energies (atom_ener) are zero:

"fitting_net": {
   "neuron": [240, 240, 240],
   "resnet_dt": true,
   "atom_ener": [null, null, 0.0, null, 0.0, null]
}

Note that atom_ener only works when descriptor/set_davg_zero is true.

3.15.3. Run MD simulations

The DPRc model has the best practices with the AMBER QM/MM module. An example is given by GitLab RutgersLBSR/AmberDPRc. In theory, DPRc is able to be used with any QM/MM package, as long as the DeePMD-kit package accepts QM atoms and MM atoms within the cutoff range and returns energies and forces.

3.15.4. Pairwise DPRc

If one wants to correct from a low-level method into a full DFT level, and the system is too large to do full DFT calculation, one may try the experimental pairwise DPRc model. In a pairwise DPRc model, the total energy is divided into QM internal energy and the sum of QM/MM energy for each MM residue \(l\):

\[ E = E_\text{QM} + \sum_{l} E_{\text{QM/MM},l} \]

In this way, the interaction between the QM region and each MM fragmentation can be computed and trained separately. Thus, the pairwise DPRc model is divided into two sub-DPRc models. qm_model is for the QM internal interaction and qmmm_model is for the QM/MM interaction. The configuration for these two models is similar to the non-pairwise DPRc model. It is noted that the se_atten descriptor should be used, as it is the only descriptor to support the mixed type.

{
  "model": {
    "type": "pairwise_dprc",
    "type_map": [
      "C",
      "P",
      "O",
      "H",
      "OW",
      "HW"
    ],
    "type_embedding": {
      "neuron": [
        8
      ],
      "precision": "float32"
    },
    "qm_model": {
      "descriptor": {
        "type": "se_atten",
        "stripped_type_embedding": true,
        "sel": 24,
        "rcut_smth": 0.50,
        "rcut": 9.00,
        "attn_layer": 0,
        "neuron": [
          25,
          50,
          100
        ],
        "resnet_dt": false,
        "axis_neuron": 12,
        "precision": "float32",
        "seed": 1
      },
      "fitting_net": {
        "type": "ener",
        "neuron": [
          240,
          240,
          240
        ],
        "resnet_dt": true,
        "precision": "float32",
        "atom_ener": [
          null,
          null,
          null,
          null,
          0.0,
          0.0
        ],
        "seed": 1
      }
    },
    "qmmm_model": {
      "descriptor": {
        "type": "se_atten",
        "stripped_type_embedding": true,
        "sel": 27,
        "rcut_smth": 0.50,
        "rcut": 6.00,
        "attn_layer": 0,
        "neuron": [
          25,
          50,
          100
        ],
        "resnet_dt": false,
        "axis_neuron": 12,
        "set_davg_zero": true,
        "exclude_types": [
          [
            0,
            0
          ],
          [
            0,
            1
          ],
          [
            0,
            2
          ],
          [
            0,
            3
          ],
          [
            1,
            1
          ],
          [
            1,
            2
          ],
          [
            1,
            3
          ],
          [
            2,
            2
          ],
          [
            2,
            3
          ],
          [
            3,
            3
          ],
          [
            4,
            4
          ],
          [
            4,
            5
          ],
          [
            5,
            5
          ]
        ],
        "precision": "float32",
        "seed": 1
      },
      "fitting_net": {
        "type": "ener",
        "neuron": [
          240,
          240,
          240
        ],
        "resnet_dt": true,
        "seed": 1,
        "precision": "float32",
        "atom_ener": [
          0.0,
          0.0,
          0.0,
          0.0,
          0.0,
          0.0
        ]
      }
    }
  }
}

The pairwise model needs information for MM residues. The model uses aparam with the shape of nframes x natoms to get the residue index. The QM residue should always use 0 as the index. For example, 0 0 0 1 1 1 2 2 2 means these 9 atoms are grouped into one QM residue and two MM residues.